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LETTER TO THE EDITOR 

Diluted continuous spin models near the percolation threshold 

A B Harris and T C Lubensky 
Department of Physics, University of Pennsylvania, Philsdelphia PA 191 04, USA 

Received 15 May 1984 

Abstract. The crossover exponents describing the behaviour of continuous spin models at 
dilutions near the percolation threshold are calculated within an E expansion, where 
E = 6 - d, where d is the spatial dimensionality. Our result confirms a recent calculation 
for the random resistor network and shows that earlier calculations of the crossover 
exponents are incorrect. 

When models exhibiting phase transitions are randomly diluted, the transition tem- 
perature Tc( p )  decreases monotonically with the concentration p of occupied sites (or 
bonds). At the percolation threshold p = pc ,  an infinite connected cluster of occupied 
sites ceases to exist (for a review of percolation, see Essam (1980)), and Tc(p )  = 0. The 
point P:  p = pc ,  T = 0 is thus a multicritical point where long-range thermodynamic 
and geometric order develop simultaneously (Stephen and Grest 1977, referred to as 
SG).  The critical properties in the vicinity of P for models (such as the king model) 
possessing an energy gap J are well understood: there is a single crossover ex- 
ponent cp = 1 ( S G ,  Wallace and Young 1978) associated with w = e-"T so that, for 
example, the order parameter susceptibility ,y satisfies the scaling relation x = 
I p - pCl -'pf( w / l  p - pel) where yp is the percolation exponent measuring the mean square 
cluster size. In this paper, we will consider the critical properties in the vicinity of P 
of a class of models (such as the xy model) whose energy spectrum does not possess 
an energy gap. We obtain results consistent with those recently found (Harris, Kim 
and Lubensky, to be published, referred to as HKL) for the randomly diluted q-state 
Potts model in the limit 4'0. 

We begin with models on a d-dimensional hypercubic lattice with a scalar variable 
6(x) at each site x governed by an interaction Hamiltonian 

H = - 1 U [ 6 ( x ) -  6(x')], 
ks') 

where (x,x') signifies the bond connecting x to x' and U ( 6 )  is a model-dependent 
function. If U(  6) = K cos 6 with 0 d 6 27r, then (1) is the xy model; if U( V) = -fK V 2  
where -cc < V < 00, then (1) describes a resistor network (Stephen 1978) with conduc- 
tances K on each bond and V ( x )  is associated with the voltage at point x. In the 
former case, (cos 6(x)) = Re(e'"'"') is the xy order parameter, and in the latter case, 
R(x,  x') = (( V ( x )  - V(x'))*) is the resistance between the sites x and x' where (A)  = 

Properties of quenched random versions of (1) in which bonds are present with 
probability p and absent with probability 1 - p  are described in the usual way by an 
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effective Hamiltonian Heff obtained by n replications of H in the limit n + 0: 

where [ I p  signifies an average with respect to the random distribution of occupied 
bonds and a is a replica index. To study the point P, we follow Stephen’s (1978) 
treatment of the random resistor network. We first introduce a discrete version of (1) 
in which 19 takes on a discrete set of values separated by an interval A4. This step 
allows us to define precisely variables related to percolation. We will regain the original 
model by allowing A4+0 at the appropriate point in calculations. We now define 
order parameters 

k # 0, (3) 
i k . 8  

$ k = e  

where k = ( k , ,  . . . , k,) and 9 =(a,,  . . . , a,), where the kth component refers to the 
kth replica. In terms of these variables, we have 

where 

with U =p/ ( l  - p )  and 

For the resistor network, U is quadratic in 6, and 4 extends between -00 and 00, so 
that 

is only a function of the rotationally invariant quantity k2 = Xu k;. For the xy model, 
the leading large-K part of ll Ff(ku) is given by (7), but because K(4) contains terms 
of order a4 and higher, there will be corrections to (7) involving ‘cubic’ invariants of 
k such as X m  k:. 

Since Hea in (4) is quadratic in each $k, we can apply the Stratanovich transformation 
to obtain a field theory in terms of fields (Pk conjugate to $ k :  

where Dcp indicates integration over all cp’s and 
r. 
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where the primes indicate omission of terms for which any k vanishes and rk = 
1 -(z&)-', where z is the number of nearest neighbours. In (9) we have omitted terms 
of higher order thafl (p3, since these are irrelevant for d near d, = 6. When K =CO (i.e. 
at P), F,(k,) = 1, so that all rk are equal to r0-p - p c .  When K- '  > 0, we can expand 
rk in powers of k: 

rk = ro+C wmk2"' + v 4 C  k4, +. . . , 
m U 

where the terms left out are higher-order terms of cubic rather than spherical symmetry. 
Here w, may be viewed as being of order K-". 

We are now in a position to develop momentum shell recursion relations (Rudnick 
and Nelson 1976) in 6 - E dimensions. When all the w, and U'S are zero, one regains 
the familiar percolation results (Harris er a1 1975) with the third-order vertex reaching 
a fixed point value of U' = ~ / 7 .  This describes the behaviour at K-'  = 0 (T = 0). When 
K - '  > 0, we have 

drk/dl=(2-qp)rk - U z Z k ,  (1 1) 

where rip= -e121 is the percolation exponent, and 

where G ( p )  = (rp + q2)-' evaluated at momentum q = 1 is the contribution from the 
one-loop diagram shown in figure 1. It is important to remember that +k is an order 
parameter only for k # 0. Thus there can be no lines in any diagram with k = 0. In 
(12) the terms with p = 0 or p + k = 0 which are included in the sum over p have been 
explicitly removed by the first term. Here G(0) is the propagator G(k) evaluated at 
k = 0. It does not, however, represent the propagator of a physical order parameter 
without further interpretation. Equation (1 2) can conveniently be manipulated into 
the form 

x k  = -2G(k)G(O) + G2(0) + 8xk, (13) 

where 

8 x k  = -4 [ G( p + k )  - G( p)I2Ap. 
P 

Since G ( p  + A ) -  G(p)  is of order K - l  for small K - I ,  one is tempted to conclude that 
681, - K - 2  may be ignored in the linearised recursion relations which give the crossover 
exponent associated with K - I .  Indeed, when there is a gap in the energy spectrum, 
this is the correct procedure. In that case, there is a single crossover exponent 9 = 1 
obtained (by SG) from the first two terms of (13). When there is no gap in the energy 

- P  

4 L 

P + k  

Figure I. One-loop contribution to Zk of equation ( 1  1). 
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spectrum, there are of order K terms which contribute to the sum in (14) so that 
S Z , - K - l .  In this case, recursion relations for the w,’s and U ’ S  appearing in (10) 
must include the contribution obtained by expanding (14) in powers of k. Since S Z k  
only gives contributions to w k  from w,’s with m > k, the crossover exponents are 
determined by the coupling of w k  to itself. Then we write 

where, after some tedious algebra, we obtain 

which gives cI = -f and c2 = &. The crossover exponent associated with w k  satisfies 

(ok = 1 - Ck&/ 14. (17) 

These results duplicate those obtained by HKL using the zero-state Potts model formula- 
tion of the random resistor network. The potentials w k  in (15) refer only to the 
rotationally invariant parts of r,. There are, in addition, all the potentials that do not 
preserve rotational invariance. For example, we find a recursion relation for v4 
of the form of (15) leading to an exponent pU4= 1 - a ~ / 1 4 ,  where a =  
( 5  - 6r(3/4)’/r( 1/4)*)/30, where T(x) is the gamma function. 

We have just shown that there are an infinite number of crossover exponents 
associated with the percolation multicritical point of gapless models that are of order 
1 SO(&). The physical interpretation of these exponents is as follows. We consider 
first the random resistor network and define 

X A X ,  x‘) = ( $ k W $ - k ( X ’ ) )  (18a) 

= [exp(-;k’R(x, x‘))] (186) 

(18c) P Y({wmk“I P - ~ c l - ‘ m } ,  I X  -XI/ O, = l X  - Xf)-(d-2+? ) 

where 6 -  1p -p,l-”p is the correlation length, and Y is some scaling function. Equation 
(186) follows because the Hamiltonian for the resistor network is Gaussian and 
(( V ( x )  - V(x’)>’) = R(x, x’) in each replica. Thus Xk is a function of k2 = Z, kz only 
and consequently depends only on the potentials w,. Expanding (186) in powers of 
k 2 ,  we see that the exponents (P, determine the behaviour of the cumulants of the 
resistance R(x, x’) at pc:  

(19) [ R m (x, x’)]c - I x  - x ’1 - ( d  - 2  +vp) +(‘d up). 

The first cumulant is the average resistance between x and x‘, the second cumulant is 
[R2(x, x’)& - [ R ( x ,  x’)]: and so forth. That the crossover exponents should be unity in 
mean field theory follows by consideration of a more general model in which occupied 
bonds are randomly given either of two values of conductance. In this case, when the 
effect of parallel paths is ignored, one expects R(x, x’) to be governed by a Gaussian 
probability distribution, apart from differences in amplitudes. This reasoning shows 
that within mean field theory the cp’s are unity. In the xy and other models, U(6) is 
not quadratic, and it is not possible to express ( 62p) in terms of (8‘) only. Thus, there 
are different types of higher-order cumulants. For example, at order four, we need to 
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distinguish between [((6(x) - S(X~))’)~], - [((6(x) - S(xf))’)]; associated with w2 and 
cp2 and [(( 6(x) - 6(x’))4)]p - 3[(( 6(x) - 19(x’))~)~], associated with v4 and qO,. 

The above results for cpI can also be obtained by studying the analogous crossover 
behaviour of the m-component Heisenberg (i.e. O ( m ) )  model with H =  
- K  X x , x ,  S(x) - S(x’). We expect rp, to be independent of m in view of the one-to-one 
correspondence between Kirchhoffs equations for the resistor network in the presence 
of an imposed voltage and those for the equilibrium of the transverse spin components 
of a ferromagnet in the presence of an imposed magnetisation gradient. For the O ( m )  
model, the order parameter in (3) is generalised by replacing exp(ik6) in each replica 
by the set of real-valued orthogonal kth-order polynomials Qt(S,(x), S2(x), . . . , S,(x)) 
in the variables S i ( x )  with Zi Sf(x) = 1. For m = 3 the Qf are essentially the usual 
spherical harmonics. For general m there are nk kth-order polynomials (with angular 
momentum k), where nk = (2k + m - 2)(k + m - 3 ) ! / [ k ! ( m  - 2!)]. In this generalisation 
each index ki in (4H6) in the above theory is replaced by the pair of indices (k, pi). 
For K + 00 we find (for m # 1) 

(20) F,( k, p ) = A{ 1 - [ k2 + ( m - 2) k]/ ( m - 1 ) K + O( K -2)}, 

where A is an unimportant constant. To order K - ’  we therefore write 

r k = r o + w l ~ [ k ~ + ( m - 2 ) k i ] .  
k ,  

To obtain the recursion relations for wI it suffices to study the diagram of figure 1 for 
small incident angular momentum, k, but allowing arbitrary angular momentum in the 
internal !egs. In this way we obviate a complete analysis of the Clebsch-Gordan 
coefficients which appear in the cubic term in the analogue of (9). Otherwise the 
calculation is very similar to that for m = 2  described above and the result is again 
c --I - 3, independent of m. (In particular we checked that the expression for cI can 
be continued to m =O.) For m = 1 the expansion in (21) is clearly invalid, and the 
usual result cpI = 1, i.e. cI = 0, should be adopted. 

We may summarise our results as follows. We have analysed the multicritical point 
for diluted continuous spin models at zero temperature and the percolation threshold 
within an E expansion near six dimensions. We find a hierarchy of crossover exponents 
describing various cumulant correlation functions. Our results agree with those found 
recently (HKL) for the Potts model formulation of the randomly diluted resistor network. 
Our result that rpl = 1 + ~ / 4 2  disagrees with previous work (Dasgupta et a1 1978, Stephen 
1978) which found cpl = 1 to order E ~ .  In fact the work of Wallace and Young (1978) 
seemed to prove that cpI = 1 held to all orders in E. Apparently these works all assume, 
at least tacitly, that the anomalous term in (14) is of order K-’, in which case it would 
be negligible. Our result for cpI has important and reasonable consequences. Since 
the exponent r describing the threshold behaviour of the conductivity, 2, i.e. X- 
( p - p C ) ‘ ,  is given by r=(d-2)v,+rpI (Hams and Fisch 1977, Dasgupta et a1 1978, 
Stephen 1978), numerical evidence (Li and Strieder 1982) that t = 1.28 ford = 2 indicates 
that cpI # 1 for d = 2. Our result that rpI varies weakly near d = 6 presumably indicates 
that it depends weakly and smoothly on d for 2 s d G 6. As we discuss elsewhere 
(HKL), our result for cpl indicates that a recent conjecture of Alexander and Orbach 
(1982) fails at first order in E. 

This work was supported in part by the National Science Foundation under grant 
# DMR-19216 and by the Office of Naval Research under grant # ONR0158. 
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